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Abstract 

The eighth moment of the magnitude of the trigono- 
metric structure factor has been computed for all the 
space groups and all the reflection subsets giving rise to 
different functional forms of this quantity. This 
extension of previously published computations of 
lower moments permits the construction of four-term 
generalized distributions of normalized intensity, which 
are necessary in treating problems arising from highly 
heterogeneous atomic compositions in various space- 
group symmetries. The related problem of odd-even 
mixed partial moments of the trigonometric structure 
factor has also been investigated, and these mixed 
moments were found to vanish for all the three- 
dimensional space groups, confirming the correctness 
of the hitherto published theoretical statistics. Similar 
computations for the plane groups showed that 
non-zero values of the mixed partial odd-even mo- 
ments are obtained for p3, p31m, p3ml, p6 and p6m. 
This result calls for some modifications of the statistical 
formalism to be applied to two-dimensional sets of 
intensity data. The modifications required for the 
centrosymmetric case are indicated in some detail. 

Introduction 

Statistical treatments of distributions of the diffracted 
intensity range from the use of asymptotic distri- 
butions based on the central-limit theorem (e.g. 
Cram~r, 1951, p. 214)to  applications of-generalized 
expansions, associated with such asymptotic prob- 
ability functions. The latter include the well known 
centric and acentric Wilson (1949) distributions, as 
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well as a few others which allow for hypersymmetry 
(Rogers & Wilson, 1953), partial centrosymmetry 
(Srinivasan & Parthasarathy, 1976) and dispersion 
(Wilson, 1980). Generalizations of the above consist of 
expansions in terms of orthogonal polynomials with 
coefficients depending explicitly on the space-group 
symmetry, number of atoms in the unit cell and their 
scattering powers (e.g. Hauptman & Karle, 1953; 
Bertaut, 1955; Klug, 1958; Shmueli, 1979; Shmueli & 
Wilson, 1981, 1983; Shmueli, 1982a). The dependence 
on symmetry enters the formalisms via mean values of 
powers of trigonometric structure-factor moduli and 
the computation of these mean values, or moments, is a 
prerequisite for any practical application of these 
generalized statistics. The first extensive calculation of 
this kind was carried out by Wilson (1978) who found 
the fourth moment of the trigonometric structure factor 
for all the space groups but two (Fd3m and Fd3c). 
Similar straightforward calculations of moments higher 
than the fourth proved impracticably cumbersome and 
error-prone, and two computer programs were 
developed whereby the fourth and sixth moments have 
been obtained for all the space groups and all the 
reflection subsets that give rise to different functional 
forms of the structure factor (Shmueli & Kaldor, 
1981). Since moments up to and including the 2nth are 
required for n-term expansions (cf Shmueli & Wilson, 
1981) the above computations led to generally usable 
three-term distributions. However, simulated distri- 
butions (Shmueli, 1982b), as well as those recalculated 
from published structures of several organometallic 
compounds (Shmueli, 1982a), show clearly that for 
extreme atomic heterogeneities (e.g. a platinum among 
fifteen light non-H atoms), still encountered in practical 
work, at least four-term generalized expansions are 
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616 MOMENTS OF THE TRIGONOMETRIC STRUCTURE FACTOR 

required and hence the numerical values of the eighth 
moment of the trigonometric structure factor are of 
importance. The computation of this moment is 
described in the present paper. 

While this work was being planned, we have also 
decided to investigate the problem of mixed odd-even 
partial moments of the trigonometric structure factor, 
which were stated to be non-zero for some (unspecified) 
space groups (Foster & Hargreaves, 1963; Srinivasan 
& Parthasarathy, 1976). These partial moments were 
ignored in previous investigations, which dealt only 
with three-dimensional groups. In fact, a computation 
of the third moment of the trigonometric structure 
factor, for a large variety of space groups (Shmueli & 
Wilson, 1982), did not reveal any non-vanishing 
moments, in the three-dimensional case. Since, how- 
ever, these partial moments form part of the even 
cumulant of the structure factor (e.g. Shmueli & 
Wilson, 1982) it was deemed worth while, in this study, 
to supplement previous preliminary considerations by a 
proper all-space-group computation of these quantities. 
As will be seen, such odd-even partial moments indeed 
exist in some plane groups only, and can be readily 
incorporated into generalized intensity statistics of 
two-dimensional sets of intensity data. The problem of 
odd moments has been briefly mentioned elsewhere 
(Foster, Hargreaves, Shmueli & Wilson, 1982). 

Computation of the eighth moment 

The trigonometric structure factor is given by 

g 

Ji(h) = ~ exp[2rdhr(Psrj + ts)], (1) 
S = I  

where g is the order of the point group of the crystal 
times the multiplicity of its Bravais lattice, h r is the 
diffraction vector (hkl), (P~lt~) is the sth space-group 
operation and rj is the position vector of thej th atom in 
the asymmetric unit of the crystal. 

Even absolute moments of J can be computed either 
by making direct use of (1) (Shmueli & Kaldor, 1981) 
or by using simplified trigonometric expressions for the 
real and imaginary parts of J, in the process of 
averaging (Wilson, 1978; Shmueli & Kaldor, 1981). 

In the direct approach, the absolute even moment of 
J is written as 

(IsL 2") = ( ( J S * ) " )  

= y . . . y  p rah Y ( -1)  m-' 
kl k2n km=kt 

× (Pk r + t k . ) ~ .  (2) 

As shown by Shmueli & Kaldor (1981), a term in (2) 
may give a non-zero contribution provided the sum 

k2n 

( -1)  ~-~ Pk~ (3) 
k m = k ~  

reduces to a zero matrix. When this condition is 
satisfied and r is not a special position with respect to 
the set of symmetry operations in (1), the value of such 
a contribution is given by 

exp n/h r Z ( - -1 )  m-1 tk • (4)  
k m = k ! 

Of course, only the representative parities of h, k and t 
need be considered in evaluating (4). 

For n = 2, the (fourth) moments of IJI can be readily 
computed for all the space groups by a rather 
straightforward search for zero matrices, employing (3) 
and (4). For n = 3, computations for space groups with 
g exceeding 24 become time-consuming (Shmueli & 
Kaldor, 1981), while for n = 4, i.e. for the present 
application to the eighth moment of IJI, g = 12 appears 
to be a convenient practical upper limit. Of course, in 
all such computations the inherent symmetry of the 
multiple summation (2) is allowed for, some program- 
ming shortcuts that suggest themselves are employed 
and the above feasibility estimates refer to the 
computational facilities at our disposal (a CDC 6600 
computer). 

For space groups of higher orders the trigonometric 
approach was found to be much more suitable 
(Shmueli & Kaldor, 1981). The algorithm for such 
computations is based on encoding the standard 
sine/cosine products (e.g. cos 2nkx cos 2nhy sin 2nlz, 
International Tables for X-ray Crystallography, 1952) 
in a form which permits us to keep track of the 
exponents of their powers, deleting terms which contain 
odd powers and substituting the appropriate integrals 
for the averages of even-powered terms. This algorithm 
was modified for the present application in two 
respects: (i) standard sine/cosine products containing 
two factors (for plane groups) or four factors (for 
hexagonal space groups) were allowed for and (ii) the 
computation was made to include mixed partial 
moments (AkBt) ,  where A and B are the real and 
imaginary parts of J. 

A practical difficulty was posed here by the elegantly 
simplified forms of A and B for the trigonal and 
hexagonal space groups (International Tables for  
X-ray Crystallography, 1952), the expansion of which 
to the standard triple and quadruple sine/cosine 
products proved to be rather tedious. This was 
overcome by making use of the Lisp-based Reduce 
system (el Computers in the New Labora tory -  A 
Nature Survey, 1981), which accepts as input argu- 
ments of the form: hx s + kys + Iz~, where x s, Ys and z s 
are symbolic coordinates of a point generated by the 
sth space-group operation, and expands the sums of 
their cosines and sines to the required form and format 
(see Appendix B). 
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The modification of the second algorithm was 
checked in several ways, among them a comparison 
with results produced by the first algorithm described 
above and a computation of (IJI4> as <A4> + 
2(A2B2) + (B4), as well as by the usual method. 

The results of this computation are presented in 
Table 1 as s = ( IJ la)  andp  = (I jI2),  for all the space 
groups and all reflection subsets for which different 
numerical values of the eighth moment were obtained. 
These moments are strictly valid for statistics involving 
sets of general hkl reflections and structures with all the 
atoms distributed among the general Wyckoff positions. 

The results obtained for triclinic, monoclinic and 
orthorhombic space groups (except Fdd2 and Fddd) 
are in agreement with those obtainable from the works 
of Foster & Hargreaves (1963) and Srinivasan & 
Parthasarathy (1976) and with the closed exact 
expressions for 

~2n= <ljl2n>/<lJ[2> n, 

given by Shmueli (1982a) for these simple but 
important cases. 

It may also be pointed out that approximate 
moments of J, as well as the partial m o m e n t s  <AkBI>, 
can be evaluated by replacing hx, ky, lz, etc. with 
pseudo-random numbers which are uniform in the [0,1] with 
range. This approach is more rapid for higher moments 
since the computing time is independent of the order of 
the moment required. It is also much easier to program. 
However, in order to obtain accurate values of such 
simulated moments, it is important to use random 
'seeds' with the computer-generated pseudo-random 
numbers. Exact moments, such as those published 
elsewhere (Wilson, 1978; Shmueli & Kaldor, 1981) and 
given in Table 1, are of course preferable but the 
approximate ones may be sufficient for some 
applications. 

The first four even moments of IJI have also been 
computed for the 17 plane groups and general 
reflections. The results for the fourth moment, q = 
<lJI4>,  a re  in agreement with those given by Wilson 
(1978) and the same correspondence between the q and 
values for the plane and related space groups (cf. 
Tables 1 and 2, Wilson, 1978) also exists for the sixth 
and eighth moments of J. For example, the moments 
obtained for the plane groups p4m and p4g are the 
same as those for P4mm, and the moments for p6m 
coincide with those for P6mm. 

The partial odd-even moments of the trigonometric 
structure factor are treated in the next section. 

The mixed partial moments of IJI 

In order to state the problem of non-vanishing 
odd-even moments and indicate how the results 

obtained in the previous section fit into generalized 
intensity statistics it is recalled that the probability 
density function for the normalized structure ampli- 
tude I EI is given by 

(5) 

for centrosymmetric space groups (Shmueli & Wilson, 
1981; Shmueli, 1982a), where H2k are Hermite poly- 
nomials as defined, for example, by Abramowitz & 
Stegun (1972) and AEk are coefficients depending on 
space-group symmetry and atomic composition. It has 
recently been shown that these expansion coefficients 
are simply related to the cumulants of the centro- 
symmetric structure factor F (Shmueli & Wilson, 
1982). We have 

X2A4 = K4(F) (6) 

Z3A 6 = K6(F),  (7) 

Z4A8 = Ks(F) + 35[K4(F)] 2, etc. (8) 

K2r(F)= ~ fffK2r(Jj), (9) 
j=l 

where K2r(Y ) is the 2rth cumulant of the real random 
variable y (e.g. Kendall & Stuart, 1969), X is the sum 
of squared moduli of the atomic scattering factors f 
(Wilson, 1942, 1978) and m is the number of atoms in 
the asymmetric unit. 

Standard cumulant-moment relationships are avail- 
able in the statistical literature and those relevant to 
(6)-(8) are given by 

K4 = f14-  3fl2 2 (10) 

K6 = f16-  15f14f12- 10g 2 + 30g23 (11) 

Ks = g 8 -  28f16f12-- 56flsf13 -- 35g 2 + 420g4g 2 

+ 560g2g2 - 630#24, (12) 
where K r are the cumulants and fir the moments of the 
distribution in question (Kendall & Stuart, 1969). In 
our case, gr should be replaced with ( j r )  in order to 
compute (9) and use it with the distribution given by 
(5). A corresponding formalism can also be given for 
the non-centrosymmetric case but the complexity 
increases, since, with possibly non-vanishing odd 
moments, the moments of IJI must be replaced with 
combinations of mixed moments of the form (AkB t> 
(see moments and cumulants of bivariate distributions; 
Kendall & Stuart, 1969). If, however, the odd 
moments vanish, the absolute moments (IJI 2n> can be 
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Table  1. The eighth absolute moment of the trigonometric structure factor 

The symbols p and s denote the second and eighth moments of IJI respectively. The numbers in parentheses, appearing beside some 
space-group entries, refer to hkl subsets which are defined in the footnotes% to the table. These subset references are identical with those in 
Table I ofShmueli & Kaldor (1981). 

Symmetry p s Symmetry p s 

Point group: I Point group: 4/mmm 
P1 1 I All P 16 1330~400 

Point group: T 14/mmm ,14,mcm 32 1703475200 

P~ 2 70 141/amd,141/acd (5) 32 1703475200 

141/amd,141/acd (6) 32 272168960 
Point groups: 2,m 
All P 2 70 Point group: 3 

All C 4 8960 All P and R 3 639 

Point g r o u p :  222 Point g r o u p :  
All P 4 2716 All P and R 6 44730 

A l l  C and  I 8 347648 

F222 16 4 4 4 9 8 9 4 4  

P o i n t  g r o u p s :  2/m,mm2 

All P 4 4900 

All C and I 8 627200 

Fmm2 16 80281600 

Fdd2 (I) 16 80281600 

Fdd2 (2) 16 11075584 

Point group: mmm 

All P 8 343000 

All 0 and I 16 43904000 

Fmmm 32 5619712000 

Fddd (i) 32 5619712000 

Fddd (2) 32 775290880 

Point group: 4 

P4, P42 4 4900 

P41* (3) 4 4900 

P41* (4) 4 676 

I4 8 627200 
I41 (5) 8 627200 
1.41 (6) 8 86528 

P o i n t  group: 

P[ 4 2716 

IF 8 347648 

Point group: 4/m 

All P 8 343000 

14/m 16 43904000 

I41/a (7 )  16 43904000 

141/a (8) 16 6056960 

Point g r o u p :  422 

P422, P4212,P4222 

a n d P 4 2 2 1 2  8 107656 

P 4 1 2 2 , P 4 1 2 1 2 .  (3) 8 107656 
P4122,P41212* (4)  8 30088 
1422 16 13779968 

14122 (7)  16 13779968 
14122 (8) 16 3851264 

Point group: 4mm 

All P 190120 

14mm , 14cm 16 24335360 

I41md,I41cd (7) 16 24335360 

141md,I41cd (8) 16 3888128 

Point groups: 42m, 4m2 

AlL P 8 107656 

I~m2, I42m. I ~ c 2  16 13779968  
142d (5) 16 13779968 
I42d (6)  16 3851264 

Point group: 32 

All P and R 6 18306 

Point group: 6 

P6 6 54810 

P61* (9) 6 54810 

P61* (I0) 6 5814 

P61* (II) 6 6966 

P61* (12) 6 34650 

P62" (13) 6 54810 

P62" (14) 6 6966 

P63 (3) 6 54810 

P63 (4) 6 34650 

Point group: 

P~ 6 44730 

Point group: 6/m 
P6/m 12 3836700 

P63/m (3) 12 3836700 

P63/m (4) 12 2425500 

P o i n t  g r o u p :  622 

P622 12 792900 

P6122" (9) 12 792900 

P6122. (I0) 12 221436 

P6122" (II) 12 230652 

P6122" (12) 12 683460 

P6222" (13) 12 792900 

P6222" (14) 12 230652 

P6322 (3) 12 792900 

P6322 (4) 12 683460 

Point group: 6mm 

P6mm 12 1845900 

P6cc (3) 12 1845900 

P6cc  (4 )  12 878220  

P63cm,P63mc (3) 12 1845900 

P63cm,P63mc (4) 12 1200780 

Point groups: 6m2, 62m 

P6m2 , P62m 12 1523340 
m 

P6c2,P62c (3) 12 1523340 

P6c2,P62c (4) 12 1039500 

P o i n t  g r o u p :  3m 

P3ml ,  P31m, R3m 6 21762 

P 3 c l , P 3 1 c  ( 3 ) ; R 3 c  (1 )  6 21762 

P3cl,P31c (4);R3c (2) 6 14850 

P o i n t  g r o u p :  ~m 

P~ml, P31m, R3m 12 1523340 

P~cl,P31c (3);R~c (I) 12 1523340 

P~cI,P31c (4);R~c (2) 12 1039500 
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Table 1 (cont.) 

Symmetry p s 

P o i n t  group:  6/mmm 
P6/mmm 

P 6 / m c c  ( 3 )  

P6/mcc ( 4 )  

P 6 3 / m c m , P 6 3 / m m ¢  

P 6 3 / m c m , P 6 3 / m m c  

Point group:  23 

P23 , P213  
I 2 3  , I 2 1 3  
F23 

24 1 2 9 2 1 3 0 0 0  

24 1 2 9 2 1 3 0 0 0  
24 6 1 4 7 5 4 0 0  

( 3 )  24 1 2 9 2 1 3 0 0 0  
(4) 24 84054600 

12 388116 

24 49678848 

48 6358892544 

P o i n t  group:  m3 

Pm3 , Pn3  , Pa3  24 3 8 9 9 7 0 0 0  

Im3 , I a 3  48 4 9 9 1 6 1 6 0 0 0  
Fm3 96 6 3 8 9 2 6 8 4 8 0 0 0  

Fd3 ( 1 )  96 6 3 8 9 2 6 8 4 8 0 0 0  

Fd3 ( 2 )  96 2 5 9 7 4 0 7 9 4 8 8 0  

P o i n t  group:  432  

P432  , P 4 2 3 2  24 1 4 5 2 4 9 2 0  

P 4 1 3 2 "  ( 1 5 )  24 1 4 5 2 4 9 2 0  
P 4 1 3 2 "  ( 1 6 )  24 8 0 1 6 1 2 0  

P 4 1 3 2 "  ( 1 7 )  24 4 9 9 0 9 6 8  
P4132" ( 1 8 )  24 3790584 

I432 48 1859189760 

I4132 (15) 48 1859189760 

I4132 (17) 48 638843904 

F432 96 237976289280 

F4132 (15) 96 237976289280 
F4132 (18) 96 62104928256 

Symmetry p s 

P o i n t  group:  ~ 3 m  

P~3m 24 1 8 9 4 8 6 0 0  

P 4 3 n  ( 1 )  24 1 8 9 4 8 6 0 0  
P 4 3 n  ( 2 )  24 1 0 1 0 1 2 4 0  

I ~ 3 m  48 2 4 2 5 4 2 0 8 0 0  
I ~ 3 d  ( 1 5 ) ; ( 2 0 )  48 2 4 2 5 4 2 0 8 0 0  

I ~ 3 d  ( 1 5 ) ; ( 2 1 )  48 1 2 9 2 9 5 8 7 2 0  

I ~ 3 d  ( 1 7 )  48 6 3 8 8 4 3 9 0 4  

F~3m 96 3 1 0 4 5 3 8 6 2 4 0 0  
F43c (15) 96 310453862400 

F~3c (18) 96 165498716160 

Point group: m3m 

Pm3m , Pn3m 48 2241141840 

Pn3n~Pm3n (I) 48 2241141840 

Pn3n,Pm3n (2) 48 1126374480 

Im3m 96 286866155520 

I a 3 d  ( 1 5 ) ; ( 2 0 )  96 2 8 6 8 6 6 1 5 5 5 2 0  

I a 3 d  ( 1 5 ) ; ( 2 1 )  96 1 4 4 1 7 5 9 3 3 4 4 0  

I a 3 d  ( 1 7 )  96 4 1 4 5 2 1 8 5 6 0 0  

Fm3m 192 3 6 7 1 8 8 6 7 9 0 6 5 6 0  

Fm3c ( 1 )  192 3 6 7 1 8 8 6 7 9 0 6 5 6 0  

Fm3c ( 2 )  192 1 8 4 5 4 5 1 9 4 8 0 3 2 0  
Fd3m ( 1 )  192 3 6 7 1 8 8 6 7 9 0 6 5 6 0  
Fd3m ( 2 )  192 7 5 7 3 0 6 8 8 4 0 9 6 0  

F d 3 c  ( 1 )  192 3 6 7 1 8 8 6 7 9 0 6 5 6 0  

F d 3 c  ( 2 )  192 5 0 3 6 3 5 3 7 8 1 7 6 0  

* And the enantiomorphous space group. 
t Remarks :  (1) h + k + l = 2n;  (2) h + k + l = 2n + 1; (3) l = 2n; (4) l = 2n + 1; (5) 2h + I = 2n;  (6) 2h + ! = 2n + 1; (7) 2k + l = 2n;  (8) 2k + l = 2n + 

1; (9) l = 6n;  (10) l = 6n + 1, 6n + 5; (11) l = 6n + 2, 6n + 4; (12) l = 6n + 3; (13) l = 3n;  (14) l = 3n + 1, 3n + 2; (15) hgl all even; (16) only one index 
odd; (17) only one index even; (18) hkl all odd; (19) two indices odd; (20) h + k + l = 4n;  (21) h + k + / = 4n + 2. 

used as they stand and the acentric analogs of (6)-(8) 
have the same functional form but different numerical 
coefficients (Shmueli & Wilson, 1981, 1981) for 
non-centrosymmetric space groups. 

It was pointed out by Foster & Hargreaves (1963) 
that the mixed partial moments 

mkl : (A k Bl ) ,  

where J = A + iB, vanish for triclinic, monoclinic and 
orthorhombic space groups if either k or l are odd, that 
mkl with l odd vanish always but m u with k odd and l 
even may be non-zero for some space groups of higher 
symmetry. 

We have examined the latter possibility by com- 
puting mkl , for all combinations of k and l with 
k + l = 3 and 5, for all the three-dimensional and 
two-dimensional (plane) groups. The computation was 
done by the methods applied to the eighth moment (see 
above). The partial moments mkl vanish for all the 
three-dimensional space groups including all the hkl 
subsets for which A and B have different functional 
forms within the same space group. It follows that the 

neglect of odd moments of the trigonometric structure 
factor (e.g. Shmueli & Wilson, 1981) is fully justified 
for three-dimensional sets of intensity data. 

Non-zero values of m u, with k odd and l even, were 
obtained for the plane groups: p3, p3ml, p3 lm, p6 and 
p6m, only. These results are summarized in Table 2 
along with the corresponding third and fifth moments 
of the (complex) trigonometric structure factor. An 
interpretation of these non-vanishing moments is given 
in Appendix A for some specific examples. 

The results given in Table 2 may be of importance in 
the computation of intensity statistics for two- 
dimensional sets of data. The previously published 
expressions for the centrosymmetric case can be 
corrected (for plane groups p6 and p6m) by including 
the terms -10m~0 and -56m50 m30 + 560]0 m20 in the 
sixth and eighth cumulants of J respectively [of. (7), (8), 
(11) and (12)], while those for the non-centro- 
symmetric case can be modified for the plane groups 
p3, p3ml and p3 lm making use of the expressions given 
by Foster & Hargreaves (1963) and Shmueli & Wilson 
(1981) for the even moments of the normalized 
intensity. The above modifications will be taken care of 
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Table 2. Non-vanishing odd moments of  the trigono- 
metric structure factor 

All the non-zero partial  momen t s  mkt = (AkBt), where A and B are 
the real and imaginary  parts  o f  J respectively and k + l = 3 and 5, 
are given in the first five rows of  the table. The real parts  o f  the 
total  odd moments*  are given by 

(Re ( J3 ) )  = m30 - 3m12 

and 

(Re( JS) )  = rns0 - 10m32 + 5m14; 

the imaginary  parts ,  containing mkt with odd l, vanish. 

p3 p3 lm p3m 1 p6 p6m 

m30 1½ 3 3 12 24 
rnl2 -1½ - 3  - 3  - -  - -  
ms0 11~ 67½ 67½ 360 2160 
m n -2¼ -13½ -13½ - -  - -  
ml4 - 6 ]  -40~ -40~ - -  - -  
k j3) 6 12 12 12 24 
~,js) 0 0 0 360 2160 

* The values of the mixed partial moments m u were obtained by a direct 
averaging of the trigonometric expressions for the above plane groups while 
those of the third and fifth moment of J resulted from a zero-matrix 
computation (see Appendix A). The latter also serve as a check of internal 
consistency of the two computations. 

in a further development of application software for 
intensity statistics. 

APPENDIX A 

The following considerations, related to the odd-even 
partial moments of the trigonometric structure factor, 
may prove illustrative. 

It is easily seen that the sum of the rotation matrices 
which appear in the plane group p3 must be a zero 
matrix. For if r is any non-zero vector in the plane 
perpendicular to the threefold axis, we must have: r + 
3r + 32r = 0 and hence the sum 1 + 3 + 32 is a zero 
operator. 

Consider the third moment of the complex trigono- 
metric structure factor for this plane group. We have 

( j3)  = (Re(j3))  + i ( im(j3))  

= ~. ~] Z (exp[2n/hr(Ps + Pt + Pu) r]), ( a l )  
s t u 

where h r = (h k), r r = (xy) and P ranges over the 2 x 2 
matrices which comprise the two-dimensional point 
group 3. 

As pointed out by Shmueli & Kaldor (1981), a term 
in such a summation usually vanishes since the real 
part of the exponent can be assumed uniform in [0,2n], 
except where the exponent vanishes. In the present 
case, for general non-zero r, this can happen only if 
Ps + Pt + Pu reduces to a zero matrix and, as can be 

seen by inspection, only the six terms in (A 1) with 
s :/: t 4: u will give (unit) contributions in the case of p3. 
Hence, ( j 3 )  = 6 for this plane group. 

On the other hand, writing J as A + iB, we have 

( j 3 )  = m3  ° - -  3m12 + i(3m21- m03), (A2) 

where mpq = (APBq), in agreement with the results in 
Table 2. The fact that 3m21 -- m03 is zero is consistent 
with a remark made by Foster & Hargreaves (1963) to 
the effect that mpq always vanishes for odd q. This was 
corroborated by our computations for p + q = 3 and 5 
(see text). 

The use of symmetry in such calculations may be of 
some interest. For example, for the plane group p6, the 
rotation matrices correspond to the operators: 1, 3, 3 2, 
- 1 ,  --3 and -32. Hence, the trigonometric structure 
factor for p6 can be written as 

J,6 = J,3 + J*3 = 2A,3 (A3) 

and its third moment is 

(J;36) = m30(P6 ) = 8m30(P3 ) (A4) 

as given in Table 2. 
Similar factorizations of space groups may, in 

principle, lead to significant simplifications of the 
computations. However, in the case of even moments 
of IJ], all the partial moments must be evaluated and, 
at least for the purpose of the present study, a 
straightforward search for zero matrices or a treat- 
ment of the full trigonometric expressions for the real 
and imaginary parts of J appear to be safer and more 
efficient. 

APPENDIX B 
Comments on symbolic programming with Reduce 

The application of symbolic programming with the 
Reduce language (Hearn, 1973) to  an automated 
development of trigonometric structure factors, men- 
tioned in the text, is a simple example of this approach 
which is still rather uncommon in the crystallographic 
literature. 

Symbolic programming, as such, is one of the oldest 
algorithmic approaches but it was not until user- 
oriented preprocessors of traditional symbolic lan- 
guages became available that such applications became 
accessible to the general user. 

The 'working' language, in the present application, is 
Lisp and its preprocessor is Reduce (Hearn, 1973). The 
latter has a closely similar syntax to that of Algol and, 
of course, no deep understanding of the intricacies of 
Lisp is required in order to apply Reduce. In other 
words, the instructions of Reduce are translated to 
those of Lisp just as Fortran, with which most 
crystallographers are familiar, is translated to an 
assembly language. 
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Reduce recognizes a small number of elementary 
functions but allows the user to define his own 
functions and operators. For example, in the present 
problem we need an operator which permits the 
expansion of a sine and a cosine of a sum of several 
angles into combinations of products of these functions. 
Denoting sine and cosine by S and C respectively, the 
required definition involves the following Reduce 
instructions: 

OPERATOR C,S; 
FOR ALL X,Y LET C(X + Y) = C(X)*C(Y) - S(X)*S(Y); (B1) 
FOR ALL X,Y LET S(X + Y) = S(X)*C(Y) + S(Y)*C(X);. 

The parameters X and Y may be constants, symbolic 
variables or functions. No numerical values are 
assigned, unless requested. 

The space-group information can be stored in an 
array R(3,N), where N is the order of the space groups. 
For example, the Reduce statements which perform 
this task for the space group P4 are: 

R(1,1):=X; R(2,1):=Y; R(3,1):=Z; 
R(1,2) := -X ;  R(2,2):-- -Y;  R(3,2):-- Z; (B2) 
R(I,3) := -V;  R(2,3) :-- X; R(3,3) :-- Z; 
R(1,4) := Y; R(2,4) := -X;  R(3,4) := Z;, 

and defining the hkl  indices by the substitution 
command: 

LET HH(I) = H, HH(2) = K, nil(a) = L;, (B3) 

we can calculate the arguments hx + Icy + lz, where the 
factor 2zr has been included in the indices, in the 
following loop: 

LET N = 4; 
FOR I:= 1 STEP 1 UNTIL N (B4) 
ARG(I) := FOR J := 1 STEP I UNTIL 3 SUM HH(J)* R(J,I);. 

The last two lines of (B4) are of course applicable to 
any space group provided the order N has been defined 
and the general equivalent positions have been stored in 
the array R. 

The real (A) and imaginary (B) parts of the 
trigonometric structure factor are now obtained for the 
above space group as 

A :-- FOR I := 1 STEP 1 UNTIL N SUM C(ARG(I)); (B5) 
B := FOR I := 1 STEP 1 UNTIL N SUM S(ARG(I));, 

and can be output (as analytic expressions) to the 
terminal or to a file which is subsequently processed by 
another program (see text). It is of interest to mention 
that the output can be obtained in a format which is 
compatible with standard Fortran and the user can thus 
preprocess the most tedious and error-prone sections of 
a Fortran program, i.e. lengthy expressions to be 
numerically evaluated, with very little effort while 
maintaining control over the actual arrangement of the 
final expression, via the factorization and simplifi- 
cation facilities offered by Reduce. Examples of Reduce 
algorithms, which were applied to the development of 
generalized intensity statistics, are given by Shmueli & 
Wilson (1983) and the detailed structure of the Reduce 

language can be found in Reduce  2 User's M a n u a l  
(Hearn, 1973). 

Such powerful tools of symbolic programming 
permit one, not only in principle, to obtain an analytical 
expression of a space-group-dependent function given 
the space-group symbol alone. The coordinates of the 
general equivalent positions can be automatically 
generated starting from such symbols (e.g. Hall, 1981; 
Burzlaff & Hountas, 1982; Shmueli, 1983) and the 
definitions of R (/ ,J)  can be readily preprogrammed. 

We were encouraged by the remarks of one of the 
referees to include Appendix B in this paper. We 
certainly agree with the referee that the well estab- 
lished methods of symbolic programming are still not 
too well known, and their illustration may be of 
interest. We are grateful for this suggestion. 
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